
SpLLT Documentation
Release 1.0

Florent Lopez

Aug 23, 2019

Contents:

1 Purpose 3

2 Installation 5
2.1 Quick Start . 5
2.2 Third-party libraries . 5
2.3 Compilers and compiler options . 6
2.4 Support . 6

3 Subroutines 7
3.1 Basic subroutines . 7

4 Indices and tables 9

Index 11

i

ii

SpLLT Documentation, Release 1.0

SpLLT

Contents: 1

SpLLT Documentation, Release 1.0

2 Contents:

CHAPTER 1

Purpose

SpLLT is a direct solver for solving large sparse symmetric positive-definite linear systems of equations:

𝐴𝑋 = 𝐵

This is done by computing the Cholesky decomposition of the input matrix:

𝑃𝐴𝑃𝑇 = 𝐿𝐿𝑇

where the factor 𝐿 is a lower triangular matrix and the matrix 𝑃 is a permutation matrix used to reduce the fill-in
generated during the factorization. Following the matrix factorization the solution can be retrieved by successively
solving the system 𝐿𝑌 = 𝑃𝐵 (forward substitution) and 𝐿𝑇𝑃𝑋 = 𝑌 (backward substitutions).

3

https://en.wikipedia.org/wiki/Cholesky_decomposition
https://en.wikipedia.org/wiki/Sparse_matrix#Reducing_fill-in

SpLLT Documentation, Release 1.0

4 Chapter 1. Purpose

CHAPTER 2

Installation

2.1 Quick Start

Under Linux, or Mac OS X:

Get latest development version from github
git clone https://github.com/NLAFET/SpLLT
Move to source directory
cd SpLLT
Create build directory
mkdir build
cd build
Create Makefile with cmake command. The -DRUNTIME option can be
used to select a runtime system.
cmake <path-to-source> -DRUNTIME=<StarPU|OMP|Parsec>
Build SpLLT software
make

2.2 Third-party libraries

2.2.1 BLAS and LAPACK

The solver depends on high performance BLAS and LAPACK libraries to perform the dense linear algebra operations
that are abundant in our kernels. For best performance, please use the library recommended by your computer man-
ufacturer (normally the Intel MKL). If this is not available, use an optimized alternative, such as OpenBLAS. The
reference BLAS and reference LAPACK libraries from netlib are at least an order of magnitude slower than modern
optimized BLAS, and should be avoided. If bit-compatible results are desired, a bit-compatible BLAS library must be
used.

The BLAS library can be passed to cmake using the LBLAS variable and the LAPACK library can be passed using the
LLAPACK variable as following:

5

http://www.openblas.net/
http://www.netlib.org/blas/
http://www.netlib.org/lapack/

SpLLT Documentation, Release 1.0

cmake <path-to-source> -DLBLAS=/path/to/blas -DLLAPACK=/path/to/lapack

2.2.2 SPRAL

SPRAL is an open source (BSD) library for sparse linear algebra and associated algorithms. It can be downloaded
directly from the SPRAL GitHub repository: https://github.com/ralna/spral.

2.2.3 Runtime system

In this package, we use a runtime system for handling the parallel execution of the code. SpLLT currently supports
three runtime systems among OpenMP, StarPU and Parsec that can be set using the RUNTIME variable when running
the cmake command. For example, to compile the OpenMP version:

cmake <path-to-source> -DRUNTIME=OMP

For StarPU and Parsec runtime systems, it is possible to specify which library to use for the compilation. For example,
when building SpLLT with StarPU, you can pass the StarPU directory using the STARPU_DIR variable:

cmake <path-to-source> -DRUNTIME=StarPU -DSTARPU_DIR=/path/to/StarPU

2.3 Compilers and compiler options

If no compiler is specified, cmake will pick a default compiler to use. If cmake cannot find an appropriate compiler, or
you wish to specify a different compiler you can do so by setting the following variables:

CC specifies the C compiler to use.

FC specifies the Fortran 90/95/2003/2008 compiler to use.

NVCC specifies the CUDA compiler to use.

Additionally, compiler flags can be specified using the following variables:

CFLAGS specifies options passed to the C compiler.

FCFLAGS specifies options passed to the Fortran compiler

NVCCFLAGS specifies options passed to the CUDA compiler.

For example, to compile with ifort -g -O3 -ip we could use:

FC=ifort FCFLAGS="-g -O3 -ip" cmake <path-to-source>

2.4 Support

Feeback may be sent to florent.lopez@stfc.ac.uk or by filing an issue on our github: https://github.com/NLAFET/
SpLLT/issues.

6 Chapter 2. Installation

https://github.com/ralna/spral
http://www.openmp.org/
http://starpu.gforge.inria.fr/
https://bitbucket.org/icldistcomp/parsec
mailto:florent@stfc.ac.uk
https://github.com/NLAFET/SpLLT/issues
https://github.com/NLAFET/SpLLT/issues

CHAPTER 3

Subroutines

3.1 Basic subroutines

subroutine spllt_analyse(akeep, fkeep, options, n, ptr, row, info, order)
Perform the analyse phase of the factorization (referred to as symbolic factorization) for a matrix supplied in
Compressed Sparse Column (CSC) format. The resulting symbolic factors stored in akeep should be passed
unaltered in the subsequent calls to spllt_factor(). This routines also initializes the numeric factorization
data stored in fkeep that should also be passed in the subsequent calls to spllt_factor().

Parameters

• akeep [spllt_akeep,inout] :: symbolic factorization data.

• fkeep [spllt_fkeep,inout] :: numeric factorization data.

• options [spllt_options,in] :: user-supplied options to be used.

• n [integer,in] :: order of the system.

• ptr (n+1) [integer,in] :: column pointers for lower triangular part.

• row (ptr(n+1)-1) [integer,in] :: row indices of lower triangular part.

• info [spllt_inform,out] :: exit status.

• order (n) [integer,out] :: permutation array used for matrix ordering.

subroutine spllt_factor(akeep, fkeep, options, val, info)
Perform the numerical factorization of the matrix whose structure is kept in akeep that is determined with the
spllt_analyse() routine. The numerical factors are stored in fkeep and should be passed unaltered in the
subsequent calls to spllt_solve() for computing the solution to the system.

Parameters

• akeep [spllt_akeep,inout] :: symbolic factorization data.

• fkeep [spllt_fkeep,inout] :: numeric factorization data.

• options [spllt_options,in] :: user-supplied options to be used.

7

http://www.numerical.rl.ac.uk/spral/doc/latest/Fortran/csc_format.html

SpLLT Documentation, Release 1.0

• val (*) [real,in] :: non-zero values for 𝐴 in same format as for the call to
ssids_analyse()

• info [spllt_inform,out] :: exit status.

Note: This routine call is asynchronous, the routine spllt_wait() should be call afterwards to make sure that the
factorization has been completed.

subroutine spllt_solve(fkeep, options, order, x, info[, job])
Solves for multiple right-hand sides on the following problems:

job Equation solved
0 (or absent) 𝐴𝑋 = 𝐵
1 𝑃𝐿𝑋 = 𝐵
2 (𝑃𝐿)𝑇𝑋 = 𝐵

Parameters

• fkeep [spllt_fkeep,in] :: numeric factorization data.

• options [spllt_options,in] :: user-supplied options to be used.

• order (n) [integer,out] :: permutation array used for matrix ordering.

• x (n,nrhs) [real,inout] :: right-hand sides 𝐵 on entry, solutions 𝑋 on exit. n represents the
order of matrix 𝐴.

• info [spllt_inform,out] :: exit status.

Options job [integer,in] :: specifies equation to solve, as per above table.

subroutine spllt_wait()
Wait for all the tasks submitted in a previous function call to be completed.

8 Chapter 3. Subroutines

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

9

SpLLT Documentation, Release 1.0

10 Chapter 4. Indices and tables

Index

S
spllt_analyse() (fortran subroutine), 7
spllt_factor() (fortran subroutine), 7
spllt_solve() (fortran subroutine), 8
spllt_wait() (fortran subroutine), 8

11

	Purpose
	Installation
	Quick Start
	Third-party libraries
	Compilers and compiler options
	Support

	Subroutines
	Basic subroutines

	Indices and tables
	Index

